Sunday, 14 September 2014

Drilling Bit Type

Drilling bit type usually have a different function. there is a reason so many factory support drilling job with different drilling bit.


There are basically three types of drilling bit

Drag bits were the first bits used in rotary drilling, but are no longer in common use. A drag bit consists of rigid steel blades shaped like a fish-tail which rotate as a single unit. These simple designs were used up to 1900 to successfully drill through soft formations. The introduction of hard facing to the surface of the blades and the design of fluid passageways greatly improved its performance. Due to the dragging/scraping action of this type of bit, high RPM and low WOB are applied.
The decline in the use of drag bits was due to:
• The introduction of roller cone bits, which could drill soft formations more efficiently
• If too much WOB was applied, excessive torque led to bit failure or drill pipe failure
• Drag bits tend to drill crooked hole, therefore some means of controlling deviation was required
• Drag bits were limited to drilling through uniformly, soft, unconsolidated formations where there were no hard abrasive layers.

Roller Cone Bits “Drilling bit”

Roller cone bits (or rock bits) are still the most common type of bit used world wide. The cutting action is provided by cones which have either steel teeth or tungsten carbide inserts. These cones rotate on the bottom of the hole and drill hole predominantly with a grinding and chipping action. Rock bits are classified as milled tooth bits or insert bits depending on the cutting surface on the cones (Figure 2 and 3).
The first successful roller cone bit was designed by Hughes in 1909. This was a major innovation, since it allowed rotary drilling to be extended to hard formations. The first design was a 2 cone bit which frequently balled up since the teeth on the cones did not mesh. This led to the introduction of a superior design in the 1930s which had 3 cones with meshing teeth. The same basic design is still in use today although there have been many improvements over the years.
The cones of the 3 cone bit are mounted on bearing pins, or arm journals, which extend from the bit body. The bearings allow each cone to turn about its own axis as the bit is rotated. The use of 3 cones allows an even distribution of weight, a balanced cutting structure and drills a better gauge hole than the 2 cone design. The major advances in rock bit design since the introduction of the Hughes rock bit
include:
  • Improved cleaning action by using jet nozzles
  • Using tungsten carbide for hard facing and gauge protection
  • Introduction of sealed bearings to prevent the mud causing premature failure due to abrasion and
  • corrosion of the bearings. The elements of a roller cone bit are shown in detail in Figure 4.
Milled tooth bit (figuer 2)

Insert  bit (figuer 3)

Diamond Bits “Drilling bit”

Diamond has been used as a material for cutting rock for many years. Since it was first used however, the type of diamond and the way in which it is set in the drilingl bit have changed.

Natural Diamond Bits

The hardness and wear resistance of diamond made it an obvious material to be used for a drilling bit. The diamond bit is really a type of drag bit since it has no moving cones and operates as a single unit. Industrial diamonds have been used for many years in drill bits and in core heads (Figure 1).
The cutting action of a diamond bit is achieved by scraping away the rock. The diamonds are set in a specially designed pattern and bonded into a matrix material set on a steel body. Despite its high wear resistance diamond is sensitive to shock and vibration and therefore great care must be taken when running a diamond bit.
Effective fluid circulation across the face of the bit is also very important to prevent overheating of thediamonds and matrix material and to prevent the face of the bit becoming smeared with the rock cuttings (bit balling).
The major disadvantage of diamond bits is their cost (sometimes 10 times more expensive than a similar sized rock bit). There is also no guarantee that these bits will achieve a higher ROP than a correctly selected roller cone bit in the same formation.
They are however cost effective when drilling formations where long rotating hours (200-300 hours per bit) are required. Since diamond bits have no moving parts they tend to last longer than roller cone bits and can be used for extremely long bit runs.
This results in a reduction in the number of round trips and offsets the capital cost of the bit. This is especially important in areas where operating costs are high (e.g. offshore drilling). In addition, the diamonds of a diamond bit can be extracted, so
that a used bit does have some salvage value.

PDC Bits

A new generation of diamond bits known as polycrystalline diamond compact (PDC) bits were introduced in the 1980’s (Figure 5). These bits have the same advantages and disadvantages as natural diamond bits but use small discs of synthetic diamond to provide the scraping cutting surface. The small discs may be manufactured in any size and shape and are not sensitive to failure along cleavage
planes as with natural diamond. PDC bits have been run very successfully in many areas around the world. They have been particularly successful (long bit runs and high ROP) when run in combination with turbodrills and oil based mud.

TSP Bits

A further development of the PDC bit concept was the introduction in the later 1980’s of Thermally Stable Polycrystalline (TSP) diamond drilling bit. These bits are manufactured in a similar fashion to PDC bits but are tolerant of much higher
temperatures than PDC bits.
Elements of a rock bit (figure 4)

PDC Bits (Figure 5)

                     Articles related to Drilling Bit Type

Saturday, 9 August 2014

How Does a Drill Bit Work?

A drill bit is what actually cuts into the rock when drilling an oil or gas well. Located at the tip of the drillstring, below the drill collar and the drill pipe, the drill bit is a rotating apparatus that usually consists of two or three cones made up of the hardest of materials (usually steel, tungsten carbide, and/or synthetic or natural diamonds) and sharp teeth that cut into the rock and sediment below.
DRILL BIT

In contrast to percussion drilling, which consists of continuously dropping a heavy weight in the wellbore to chip away at the rock, rotary drilling uses a rotating drill bit to grind, cut, scrape and crush the rock at the bottom of the well. The most popular choice for drilling for oil and gas, rotary drilling includes a drill bit, drill collar, drilling fluid, rotating equipment, hoisting apparatus and prime mover.
The prime mover is the power source for the drilling, while the hoisting equipment handles lifting the drill pipe to either insert it into the well or lift it out of the well. Rotating equipment is what sets the whole system in motion. Before the early 1900s, drilling equipment was spun using livestock and a wooden wheel, but now, the rotating equipment is put in motion by a rotary table, which is connected to a square-shaped hollow stem, called a Kelly. Connected to the Kelly is the drill collar, which puts pressure and weight on the drill bit to make it drill through the rock and sediment. Capping off the drillstring is the drill bit, and encompassing the drilling process is drilling fluid, which helps to provide buoyancy to the drill string, lubricate the drilling process and remove cuttings from the wellbore.



Types Of Drill Bits:
             

DRILL BIT
           There are a number of different types of drill bits. Steel Tooth Rotary Bits are the most common types of drill bits, while Insert Bits are steel tooth bit with tungsten carbide inserts. Polycrystalline Diamond Compact Bits use synthetic diamonds attached to the carbide inserts. Forty to 50 times stronger than steel bits, Diamond Bits have industrial diamonds implanted in them to drill extremely hard surfaces. Additionally, hybrids of these types of drill bits exist to tackle specific drilling challenges.

Various drilling designs are also employed for different results, including core bits, which gather formation cores for well logging; mill bits, which help to remove cuttings from the well; and fishtail bits, which enlarge the drill hole above the drill bit.

Different configurations work better on different formations; so a number of different drill bits may be inserted and used on one well. Additionally, drill bits have to be changed due to wear and tear. Drilling engineers choose the drill bits according to the type of formations encountered, whether or not directional drilling is required, for specific temperatures, and if well logging is being done.

When a drill bit has to be changed, the drill pipe (typically in 30-feet increments) is hoisted out of the well, until the complete drill string has been removed from the well. Once the drill bit has been changed, the complete drill string is again lowered into the well.